Linear Regression
This R script reads a CSV file containing bare ground cover and precipitation data, fits a linear regression model, and then visualizes the results. It calculates the slope, intercept, R² value, and p-value, plots both a scatter plot and a regression line with confidence intervals, and finally exports the figure as an SVG file for easy sharing or embedding.
# Install and load required packages --------------------------------------
# Uncomment the next 3 lines if you need to install these packages
# install.packages("ggplot2")
# install.packages("dplyr")
# install.packages("svglite")
# Load necessary libraries
library(ggplot2)
library(dplyr)
library(svglite)
# Load Data ----------------------------------------------------------------
data <- read.csv("C:/Users/") # Replace with actual file path
# Check the structure of the data to ensure variables are correct
str(data)
# Data Processing ----------------------------------------------------------
# Fit linear model
model <- lm(BGR ~ NOAA_Precip, data = data)
# Extract model details: slope, intercept, R-squared, and p-value for slope
slope <- coef(model)[2]
intercept <- coef(model)[1]
r_squared <- summary(model)$r.squared
p_value <- summary(model)$coefficients[2, 4] # p-value for the slope coefficient
# Set p-value text based on the condition
p_value_text <- ifelse(p_value < 0.01, "<.01", round(p_value, digits = 2))
# Create equation text for display
equation_text <- paste0("y = ", round(slope, 2), "x + ", round(intercept, 2),
", R² = ", round(r_squared, 2),
", p = ", p_value_text)
# Determine axis limits to make scales match
max_value <- max(data$BGR, data$NOAA_Precip, na.rm = TRUE)
min_value <- min(data$BGR, data$NOAA_Precip, na.rm = TRUE)
# Save the plot as an SVG file
svglite("BGvsPrecipitation.svg")
# Plot --------------------------------------------------------------------
print(ggplot(data, aes(x = NOAA_Precip, y = BGR)) +
# Scatter plot points
geom_point(color = "black") +
# Trendline with confidence interval
geom_smooth(method = "lm", color = "dodgerblue", fill = "dodgerblue", se = TRUE) +
# Add 1:1 perfect fit line
geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +
# Set axis labels and title
labs(title = "Bare Ground vs Precipitation Linear Regression", x = "NOAA Annual Precipitation in Inches", y = "RAP Bare Ground Percent Cover") +
# Add text annotation with model details on the top left
annotate("text", x = min_value + 5, y = max_value - 5, label = equation_text,
hjust = 0, vjust = 1, size = 4, color = "black", parse = FALSE) +
# Apply minimal theme
theme_minimal() +
# Remove legend
theme(legend.position = "none"))
dev.off()